
Journal of Applied Mathematics and Mechanics 70 (2006) 924–933

Non-linear near-resonance oscillations of an
elastic incompressible layer�

A.G. Kulikovskii, E.I. Sveshnikova
Moscow, Russia

Received 11 April 2006

Abstract

Plane one-dimensional waves of small amplitude, propagating transverse to an incompressible elastic layer and reflected succes-
sively from its boundaries, are considered. The oscillations are caused by small periodic (or close to periodic) external action on
one of the layer boundaries, when the period of the external action is close to the period of natural oscillations of the layer. One of
the boundaries of the elastic layer is fixed, while the other performs small specified two-dimensional motion in its plane. In such a
near-resonance situation, non-linear effects occur which may build up over time. A system of equations is obtained which describes
the slow change in the functions characterizing the oscillations of the medium in each period of the external action. It is assumed
that all the quantities depend both on real time, any change of which in the approach considered is limited to one period, and on
“slow” time, for which one period of real time serves as a small quantity. It is assumed that the evolution of the solution occurs when
the slow time changes, while the role of real time is similar to the role of a spatial variable. This system of equations is obtained
by the method of averaging over a period of the quantities representing nonlinear terms and the effect of the boundary conditions
in the equations. It contains derivatives with respect to the real and slow times and also values of the functions characterizing the
solution averaged over a period of the real time. If the averaged values are known, the equations have a hyperbolic form and their
solutions can be both continuous and contain weak and strong discontinuities.
© 2007 Elsevier Ltd. All rights reserved.

It was shown in Refs 1,2, when investigating slightly non-linear plane waves in elastic media, that in an incompress-
ible medium only transverse waves, described by equations with a cubic non-linearity, can propagate. In the equations
terms describing slight anisotropy of the medium were also taken into account,2 and it was assumed that these terms
are of the same order as the non-linear terms. The smallness of the non-linearity and the anisotropy means that a
considerable time is required for effects related to these to manifest themselves. Thus, if � represents the change in
the quantities in a wave, then, for example, the time of breaking of a Riemann wave of finite length will be of the
order of �−2. These effects can only be observed in limited volumes of a medium when the wave travels through the
medium many times and is reflected from its boundaries. This occurs, for example, in the problem of near-resonance
oscillations of an elastic layer, excited by periodic action on one of its boundaries.

Steady near-resonance oscillations have been investigated in detail in a gas (see, for example, Refs 3–8), situated in a
tube for different conditions at its ends. Equations were obtained describing the process by which periodic oscillations
of the gas become established.6 Transverse oscillations in a layer of an isotropic elastic medium were investigated in
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the case when one component of the stresses produces the transverse oscillations and the average value of the stresses
over a period is zero.9 These oscillations, as mentioned, are described by equations with a cubic non-linearity, unlike
the quadratic non-linearity in the case of the oscillations of a gas. Plane motions were considered in Ref. 10 for the
oscillations of a layer of plasma in a magnetic field, orthogonal to the layer, with the particular assumption that the
velocity of sound is identical with the Alfven velocity. This leads to complex resonance interaction of the transverse
Alfven perturbations and the longitudinal acoustic waves.

For oscillations of a layer of a slightly anisotropic elastic incompressible medium, considered below, two types of
waves propagate in each direction, the velocities of which differ by a quantity of the order of �2, determined by the
effect of the non-linearity and the anisotropy. Hence, near-resonance conditions occur simultaneously for both types
of waves. The presence of anisotropy of the medium makes it natural to investigate oscillations in which the medium
performs arbitrary motions in planes orthogonal to the direction of wave propagation. For simplicity we will assume
the medium to be incompressible. If the medium is compressible, but there are no resonances between the longitudinal
and transverse perturbations, longitudinal perturbations will not develop to any great extent and we would expect that
the transverse oscillations will be close to the oscillations of an incompressible medium considered previously.

Below we obtain equations which describe the development of oscillations when there are external actions, close
to periodic, on the layer surface, i.e. the actions vary only slightly from period to period, and the length of the period
itself may also change slowly. It is also permissible for the properties of the elastic medium to vary slowly with time.
The equations obtained can be used both to investigate the oscillations which arise and vary when there are specified
external actions, and also to determine the external actions required to maintain a previously specified form of the
oscillations or their variations in accordance with a certain program. An example is considered in which the actions
required to maintain oscillations of a specified form are calculated.

1. Formulation of the problem

Suppose an incompressible elastic layer of width L is situated between two parallel planes, orthogonal to a certain
direction, taken as the axis x3 = x of a Cartesian Lagrange system of the initial state. We will consider plane one-
dimensional transverse waves propagating in the direction of the x axis. The x1 and x2 axes lie in the plane parallel to
the wave front.

The elastic medium is slightly non-linear, possesses slight anisotropy and can be specified by its elastic potential �

in the form of an expansion in series in the small components of the tensor of the displacement gradients ∂wi/∂xj(i, j =
1, 2, 3), where wi are the components of the displacement vector. Only the components ∂wi/∂xj = ui(x, t) vary in
plane waves. In an incompressible medium u3 = ∂w3/∂x = const = 0 and hence � = �(u1, u2). If in the expansion
of the elastic potential � in series the variable components ui of the deformation, which are assumed to be small, we
can confine ourselves to the principal terms, that exhibit the non-linearity and anisotropy of the medium, then in the
general case we can represent the function � in the form1,2

(1.1)

The coefficient f in the first term differs only slightly from the shear modulus � and is proportional to the square
of the velocity of small perturbations in a linear isotropic medium c2

0 = �0. The last term represents the non-linear
properties of the medium, its coefficient � is finite and can have any sign. The factor g on the anisotropic term is
assumed to be small and positive. In order that the action of the effects of non-linearity and anisotropy should be of
the same order, we must assume that g ∼ �2 in expansion (1.1), where � is the order of magnitude of ui. The medium
is assumed to be uniform and its density �0 = const. We will henceforth assume that �0 = 1, so that c2

0 = f , which can
always be achieved by an appropriate choice of the system of measurement units.

The differential equations of one-dimensional motions of an incompressible elastic medium in Lagrange variables
can be represented by the hyperbolic system

(1.2)

Here vi = ∂wi/∂t are the components of the velocity vector.
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It is useful to note that, for waves of small amplitude propagating in only one direction (for example, in the direction
of the x axis), this system of four equations can be converted approximately, but without loss of accuracy, into a
system of two equations2,11 with potential �1 of the same structure as (1.1), but with somewhat changed coefficients
f → f1, g → g1, � → �1:

(1.3)

In the linear approximation in a layer of an isotropic elastic medium between planes x = −L and x = 0, free from
external actions, periodic natural perturbations can exist which propagate along the x axis with a velocity c0 and a
period of natural oscillations T0 = 2L/c0. As a result of anisotropy the velocity of linear oscillations will differ from c0
by a quantity of the order of �2.

Suppose now that one of the boundaries (x = −L) is subjected to a small external periodic action in the form of a
small periodic motion of the boundary of the layer in its plane. Plane transverse waves, excited in the layer, will travel
in the direction of the x axis, and will be alternately reflected from one boundary of the layer to the other. We will first
assume that the period of the external action is constant (T = const) and the properties of the medium do not change
with time.

The following conditions will be satisfied on the boundaries: vi = 0 when x = 0 and vi = �i(t) when x = −L, where
the functions �i(t) are periodic with period T �= T0 and have small amplitude not less than an order of magnitude smaller
than ui. It will be seen later that if this amplitude is of the order of �3, the effect of the external actions may compensate
the action of the non-linear terms and steady periodic oscillations of the medium will be possible.

We will now assume that the period of the external actions T is constant and close to the period of natural oscillations
T0, so that the quantity a = 2L/T = const differs only slightly from the velocity of natural oscillations c0, where a2 − c2

0 ∼
�2. With these assumptions, it is necessary to take into account non-linear terms in Eq. (1.2), while the solution in a
single period can be constructed as the sum of linear waves propagating with a velocity a, and small corrections which
arise from the action of non-linear terms, which, together with the action of the boundary conditions, lead to a slow
change in the waves from period to period.

2. Conversion of the equations

The linear approximation. Instead of the elastic potential � we will introduce another function

(2.1)

Since a2 differs from the coefficient f by a quantity of the order of �2, all terms of the new function F, including
those quadratic in ui, are of the order of �4. We will convert the first group of Eq. (1.2) so that all terms of the order of
� lie on the left-hand sides of the equations, and all terms of higher order of smallness (they are of the order of �3) are
transferred to the right-hand sides. The right-hand sides can be written in terms of the new function F in the form

The left-hand sides of this system of four equations can be reduced to the characteristic form

(2.2)
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For the left-hand sides of this system, the functions

(2.3)

are Riemann invariants which enable system (2.2) to be written in the form

(2.4)

where, on the right-hand sides of the equations uk must be expressed in terms of w±
k :

We will use the method of successive approximations to investigate the problem. We will take the solution of the
linear system as the zeroth solution, when the right-hand sides (of the order of �3) can be neglected. These are travelling
waves in the positive and negative directions of the x axis, in which the corresponding zeroth approximations of the
Riemann invariants are preserved:

and, correspondingly, for the components of the deformation and velocity the following equalities hold

(2.5)

Since, by the conditions of the problem, the external action �i(t) has an amplitude that is much less than the quantity
ui, in the linear approximation considered on both boundaries we must take the zero boundary conditions v0

i = 0 when
x = 0 and when x = −L.

The condition on the right boundary (where x = 0), gives

(2.6)

However, for the moment it is best to retain both functions �i(at = x) and �i(at + x) in order that their notation can
be indicated on the structure of their arguments. The second boundary condition for x = −L indicates that the solution
in the zeroth approximation is periodic with period 2L/a = T.

3. Finding the next (non-linear) approximation

For an elastic potential of the form (1.1), the right-hand sides bi(uk) of Eq. (2.4) have the form

The coefficients

are of the order of �2, while the functions obtained bi ∼ �3. We will use the method of successive approximations to
integrate Eq. (2.4). In view of the smallness of the functions bi on the right-hand sides of Eq. (2.4) we will use the
zeroth approximation (2.5) for ui.
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Fig. 1.

In the expressions for bi(�k, ϑk), taking into account the form of the arguments of the functions �k and ϑk, the
differentiation with respect to x can be replaced by differentiation with respect to t. Then bi take the form

(3.1)

We will integrate Eq. (2.4) with the right-hand sides (3.1) along their characteristics.
In Fig. 1, we show, in the characteristic (x, t) plane, the boundaries of the elastic layer x = −L and x = 0 and the

characteristic x − at = const (AD), which moves to the right as the time increases, and the characteristics x + at =
const (DB), which moves to the left. The functions �i(at − x) and their derivatives are constant on the characteristics
(AD), moving to the right, while the functions �i(at + x) and their derivatives are constant on the characteristics (DB),
moving to the left.

We will investigate how the state of the medium, i.e. ui, vi, and consequently, w±
i , changes at a fixed point of space

during a period T. We will choose as the observation point the left-hand boundary of the layer x = −L. We will take the
state w±

i (−L, t) at the point A on the left-hand boundary as the initial state and, integrating Eq. (2.4), we will obtain
these functions at the point B on the same boundary in terms of the period T, thereby satisfying the boundary conditions
on the right-hand boundary of the layer. Integration of the first of the equations along its characteristic gives, at the
point D(0, t + T/2) on the right-hand boundary

When evaluating the integrals of bi (obtainable from each term) we take into account the fact that the functions
�i(at − x) and their derivatives are constant along the characteristic AD. Although the functions �i(at + x) vary along
AD, their values can be assumed to be taken along their characteristics (at + x = const) from the section AB of the
boundary x = −L. Hence, when integrating the equation for w+

i along AD, the functions ϑi must be integrated along
the whole section AB, i.e. with respect to time from t to t + T. Here we take into account the fact that the functions
�i(−L, t) are periodic, so that

As a result we obtain

(3.2)

The quantities F+
i , obtained on integrating the right-hand sides of Eq. (2.4), were calculated taking into account the

fact that on the right-hand boundary (at x = 0) the boundary condition of linear problem (2.6) must be satisfied. We
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have

(3.3)

where

(3.4)

The quantities defined by Eq. (3.4) may vary slowly from period to period, since for each step of the passage of the
waves from one boundary to the other, the functions ui obtained as a result of the passage of the preceding cycle act as
the functions �i.

To calculate the functions w±
i on the left-hand boundary of the layer we can use the result of the integration of the

second group of Eq. (2.4) along the characteristic of the second family DB from t + T/2 to t + T. The point D(0, t + T/2)
on the right-hand boundary of the layer serves as the initial point. The functions bi(�k, ϑk), specified by Eq. (3.1), are
integrated in the same way. Only the functions �i(at + x) and their derivatives will be constant on the characteristic
BB, while the values of �i are taken along their characteristics (x − at = const) from the section AB of the left-hand
boundary. As a result of the integration we obtain

(3.5)

Taking into account the fact that

(3.6)

we obtain from the boundary condition at x = 0

and from boundary condition (2.6) for the linear approximation it follows that

As a result, using relation (3.2), Eq. (3.5) gives

4. The equations of the slow evolution of the waves

Adding and subtracting w−
i (−L, t) from the left-hand side of the last equation and taking into account, as above,

Eq. (3.6), we can calculate the change in the function w−
i on the left-hand boundary over the whole period T (from

point A to point B in Fig. 1)

(4.1)

Similarly we can calculate the change in w+
i over a period of the functions

(4.2)

The last terms on the right-hand sides of Eqs. (4.1) and (4.2) are determined by the boundary conditions on the left-hand
boundary, where vi(−L, t) = �i(t) is specified.

Eqs. (4.1) and (4.2) describe the small change in the functions w±
i over a period due to the presence in Eq. (2.4) of

the right-hand sides, due to the fact that non-linear effects and the external action have been taken into account when
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x = −L. In addition to the real time t we can introduce into consideration a “slow” time 	 for which the period T will
be a small quantity. Then, dividing each of Eqs. (4.1) and (4.2) by T, we can represent them in the form of a system
of partial differential equations, where one of the variables is the slow time 	 and the other is the real time t, and the
equations describe the change in the functions wi on the left-hand boundary of the layer. We have

(4.3)

We can now return to the initial functions ui and vi, which occur in the formulation of the problem. According to
relations (2.3) w−

i = vi + aui, and on the left-hand boundary where x = −L

(4.4)

Here we have assumed that �i are periodic functions, i.e. they do not change in slow time: ∂�i/∂	 = 0. Hence, the first
equation of (4.3) can be represented in the form

(4.5)

It was assumed when formulating the problem that the components of the deformation of the medium ui are small, of
the order of �, and, consequently, the values of the functions �i are of the same order. As can be seen from expressions
(3.3), the functions Fi are of the order of �3, and hence the value of the error will be less than �3, if we replace the
functions �k in the expressions for Fi by u0

i using formulae (2.5) or approximately by the functions

Moreover, to obtain the system in the more usual form we replace the variable t by 
 = at. The variable 
 has the
dimensions of length and, over a period of time T, varies from 0 to 2L. As a result, system (4.5) takes the form

(4.6)

Here

(4.7)

Hence, we have obtained a system of two inhomogeneous differential equations in the variables 	, t with a symmetric
matrix ||Aij|| for describing near-resonance oscillations in an elastic layer. In this system the change in 	 is not limited,
while t varies over a single period, while the end of one cycle is the beginning of the next one. Neglecting the change in
quantities over a single cycle, we can assume that all the quantities are functions of t and 	, where t varies over a closed
line of length T, while the dependence on 	 describes the slow change of these functions. The solutions of Eqs. (4.6)
and (4.7) give ui for x = −L and arbitrary values of the time. The quantity 	 gives the number of the period considered
while t indicates the time inside the period. Knowing ui(t) when x = −L it is easy to obtain the values of ui and vi at
any point x, t of the layer.

If we assume the quantities ū1, ū2, hij to be given, the system of Eqs. (4.6) and (4.7) are hyperbolic, which follows
from the symmetry of the matrix ||Aij||. The elements of the matrix ||Aij|| can be represented in the form of second
derivatives of a certain function �(u1, u2), which plays the role of the potential.
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Eq. (4.6) take the form

(4.8)

Here

(4.9)

Obviously, f and g are of the order of �2, so that all the functions � are of the order of �4. The coefficients of the
matrix ||Aij|| (4.7) are expressed in terms of the function � by the equalities

Note that in the expressions for f̄ , ḡ, �̄, m̄ the quantity a in the numerators of all the expressions can be replaced
by the velocity of the linear isotropic waves c0 = √

f , while satisfying the assumed accuracy.
Expressions (4.7) for the coefficient Aij and the potential � are simplified considerably when the functions ui, when

they are averaged over a period, have zero mean value ūi = 0. It is easy to indicate the requirements which the functions
of the external action �i must satisfy in order to ensure the desired property of the solution. To do this it is sufficient
to integrate Eq. (4.6) over a period, putting ūi = 0 in them.

In any case, Eq. (4.8), which describe the slow change in the motion from period to period, have the same form as
the well-investigated Eq. (1.3) for transverse waves, which propagate in one direction in an unbounded elastic medium,
while the potential � has the same structure as the initial elastic potential �1 in these equations. The absence of a term
with the product u1u2 in the function � (1.1) was due to the special choice of the x1 and x2 axes in the plane of the
wave front.

A considerable difference between system (4.8) and (1.3) is the fact that the averaged quantities ūi, hij depend on
	, and consequently, the coefficients f̄ , ḡ and �̄, which occur in expression (4.9) for the function �, may vary slowly
as 	 increases. Nevertheless, we would expect that the solution of the problem of the evolution of the waves will have
similar properties to the solution of the well-known problem of waves in an unbounded medium. In particular, the
evolution of the solutions may lead to the formation of discontinuities.

5. A slow change in the period

We will now consider the case when a slow change occurs from period to period in the boundary conditions which
specify the external action. We will also assume that the length of the period T = T(	) and the coefficients of elasticity
of the medium f, g and � also vary slowly with time. It was pointed out earlier that since the external action is of the
order of �3, and the perturbations themselves are of the order of �, the characteristic time during which a considerable
change in the oscillations can occur is of the order of �−2. If some changes in the boundary conditions occur after a
considerably shorter time, we can assume that after the lapse of this time functions which define the oscillations are
unable to change if the period of the external action T does not change, while in the case when T changes, the changes
in all these functions can easily be taken into account in the linear approximation. If the characteristic time of variation
of the boundary conditions is an order of magnitude greater than �−2, the oscillations can obviously be assumed to be
quasi-stationary. Taking into account the fact that the difference in the period of the external action T from the time
which is required by the characteristics to traverse the section L in both directions has an order of magnitude no less
than �2, the quantity ∂T/∂t must be assumed to be of the order of �4.

The quantity a = 2L/T in this case turns out to be variable, since T may slowly vary with time. Moreover, we will also
assume that f, g and � in expression (1.1) for � are slowly varying functions. Introducing the variable t1 = ∫

a(t)dt
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instead of t, we obtain the following new equations for the invariants (2.3) instead of system (2.4)

(5.1)

According to the estimate of the quantity ∂T/∂t made above, the terms with ∂a/∂t1 in the cases of interest which
occur are of the order of �5 in Eq. (5.1) and can be dropped. If we assume that the change in the coefficients f, g
and � are related to the change in entropy, which occurs during the transmission of shock waves, the amplitude of
which is of the order of �, then after a single period the change in the coefficients will not be of an order of magnitude
exceeding �4.2 If we confine ourselves to this case, then, when calculating the change in w+

i and w−
i over a period we

can ignore the changes in the quantities a, f, g and � over one period, and only take into account the average changes
of these quantities over many periods, i.e. we can assume that a, f, g and � are slowly varying functions of time, i.e.
they are functions of 	. Further calculations repeat the case when T = const, with the sole difference that the functions
of the zeroth approximation �i and ϑi will now depend on t1 − x and t1 + x respectively. Here expressions (3.1) for
b1 and b2 will be retained with ∂/∂t replaced by a(	)∂/∂t1, and also the final Eqs. (4.6) and (4.7), taking into account
the fact that the coefficients occurring in (4.7) and the functions �i depend both on the real time t and on the slow
time 	.

6. Maintaining a steady periodic mode of oscillations in the layer

Eq. (4.6) enable us to consider the problem when it is required to maintain or, in a certain way, change the oscillations
of an elastic layer. We will consider the problem of maintaining periodic oscillations in the case when the oscillations
are steady. Thus, we will assume that

Then, for a specified desired form of the solution ui(t), the remaining terms enable us to obtain functions of the
external action �i(t), which in each cycle will compensate the non-linear effects that occur. We have

It can be seen from these equations and expressions (4.7) for Aij, that the functions �i(t), which define the external
actions, are of the order of �3, if the main solution ui is of the order of �.

To illustrate this problem we will take a simple example. Suppose the periodic solution, which must be maintained
in the layer, has the following form on the boundary

Here � = 2�/T, while the period T is close to the resonance period T0 = 2L/c0, defined by the velocities of the transverse
waves in the elastic material considered. Then

and we obtain the following expressions for the functions �i
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which consists of the sum of several harmonics with periods that are a multiple of the specified period. The first terms
in these expressions recall the result of the investigation of the linear problem. For certain values of a (defined by the
period T) one of these terms may vanish. The second terms in the expressions for �i vanish when A = B.
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